НОВОСТИ  АТЛАС  СТРАНЫ  ГОРОДА  ДЕМОГРАФИЯ  КНИГИ  ССЫЛКИ  КАРТА САЙТА  О НАС


предыдущая главасодержаниеследующая глава

Какие бывают проекции

Составление карты сводится к изображению географических объектов, расположенных на земной поверхности. Их можно выполнить различным путем. Заключим, например, изображение в какую-то систему координат х, у, а затем преобразуем ее в другую систему х1у1 и перенесем изображение по клеткам координатной сетки (рис. 6). Что же произошло в результате? Лоб сделался скошенным, затылок выдался назад и т.д. Чем детальнее мы станем описывать результаты изменений, тем станет яснее, как помогает такому описанию координатная сетка. В сущности, все описание можно свести к показу того, что произошло с сеткой, так как она является как бы каркасом изображения.

Рис. 6. Преобразование изображений при переходе от одной координатной сетки к другой
Рис. 6. Преобразование изображений при переходе от одной координатной сетки к другой

Для картографических изображений своеобразным каркасом служит градусная сетка, которая наносится на основу будущей карты в определенной картографической проекции. Затем по клеткам градусной (картографической) сетки переносят и вычерчивают материки и другие географические объекты.

Сущность картографического проектирования легко уясняется из следующего примера. Возьмем полый стеклянный шар и на одной его половине нанесем градусную сетку и очертания материков, океанов, морей (рис. 7). С одной стороны шара установим экран, а с другой стороны на уровне экватора - источник света, например карманный фонарь. В этом случае на экран проектируются градусная сетка и контуры материков. Обведя полученное изображение карандашом, получим карту полушария.

Рис. 7. Схема получения азимутальной проекции
Рис. 7. Схема получения азимутальной проекции

Сравним начертания параллелей и меридианов на глобусе с очертаниями их на карте полушария. Если на глобусе все параллели представляют собой окружности, расположенные параллельно экватору, то на карте полушария экватор изображается прямой линией, а параллели - кривыми линиями разной округлости, и поэтому равные расстояния между параллелями получаются на карте различными. Все меридианы на глобусе имеют одинаковую длину, что соответствует действительности. На карте полушария длина меридианов различна. Средний меридиан изображен прямой линией, крайние образуют окружности, длина которых в полтора раза больше среднего, а остальные - кривыми.

При проектировании градусной сетки с глобуса на плоскость, касательную к нему в какой-либо точке, или на плоскость, секущую его, получают так называемые азимутальные проекции. В нашем примере плоскость касалась глобуса в точке экватора. Такие проекции называют поперечными. Если же точка касания находится на полюсе, то проекция называется прямой. Прямая азимутальная проекция имеет совершенно другую форму картографической сетки: параллели на ней изображаются концентрическими окружностями, а меридианы - прямыми радиальными линиями.

Концентрические окружности могут быть нанесены по-разному. Их можно провести, например, радиусами выпрямленных дуг меридиана от полюса до соответствующих параллелей. Такая проекция называется равнопромежуточной по меридианам. На ней сохраняется одинаковый масштаб по всем меридианам.

Азимутальных проекций может быть великое множество. Во-первых, точку касания можно брать не только на экваторе или на полюсах, но в любом другом произвольном месте. Во-вторых, источник света, т. е. центр проектирования, можно передвигать все дальше и дальше от глобуса, и в каждом случае картографическая сетка будет принимать разную форму.

А вот еще один вид картографической проекции. Вообразите, что земной шар обернут цилиндрической поверхностью, соприкасающейся с ним по линии экватора (рис. 8, а). Световая точка находится на оси шара и посылает веером вокруг себя плоский пучок лучей, параллельных экватору, при этом точка перемещается вдоль земной оси, проецируя по очереди только те параллели, которые находятся на одном уровне с ней.

Рис. 8. Схема получения цилиндрической проекции
Рис. 8. Схема получения цилиндрической проекции

Движущаяся световая точка перенесла с шара градусную сетку на поверхность цилиндра. Снимем этот экран, замкнутый в цилиндр, разрежем его по одному из меридианов и, развернув на столе, получим карту в цилиндрической проекции (рис. 8, б). Для подобных проекций характерны взаимно перпендикулярное начертание параллелей и меридианов и равенство расстояний между меридианами. По расположению параллелей выделяются три основных вида проекций. В полученной нами проекции расстояния между параллелями значительно уменьшаются по мере приближения к полюсам, и поэтому очертания материков, удаленных от экватора, становятся уродливыми. Такую проекцию разработал немецкий ученый Ламберт в середине XVIII в. Фламандский картограф Меркатор поступил наоборот: он увеличил расстояния между параллелями от экватора к полюсам, и карта приняла совершенно иной вид (см. рис. 5). Если же расстояния между параллелями равны между собой и расстояниям между меридианами, это будет квадратная проекция. Ее предложил еще в 1438 г. португалец Энрико, известный также под именем Генриха Мореплавателя.

При построении цилиндрических проекций цилиндр, на который переносится градусная сетка, может касаться шара не только по линии экватора, но и по любой другой линии большого круга. И не только касаться, но и рассекать его. В зависимости от этого картографическая сетка также принимает различный вид.

В цилиндрической проекции составляются и топографические карты. Но в отличие от мелкомасштабных обзорных карт местность на них изображается как на плане, т.е. практически без искажений. Как же это объяснить? Дело в том, что поверхность Земли переносится на плоскость не сразу вся, а по отдельным частям — зонам шириной 6° по долготе. Каждая зона как бы переносится с земного шара на поверхность воображаемого цилиндра, который затем разрезается и развертывается. Перенесенные таким путем зоны изображаются на плоскости одна рядом с другой. Масштаб в каждой зоне практически одинаков. Поэтому не только отдельные листы топографических карт, но и их склейки в пределах зоны при измерениях можно использовать как планы, на которых сохраняется постоянство масштаба. Две зоны соприкасаются между собой только в точке на линии экватора, а к северу и к югу от экватора происходят разрывы. В них-то и скрыты искажения за счет перехода со сферы на плоскость. Если же склеить все зоны вместе, то получится шаровая поверхность, т. е. глобус.

Следующая большая группа проекций относится к коническим. В конических проекциях градусная сетка переносится с шара на боковую поверхность касательного к нему или секущего конуса, который затем так же, как и цилиндр, разрезается и развертывается. Градусную сетку в конической проекции можно легко построить самим, используя глобус и лист кальки. Из кальки сделайте конус, который затем поставьте на глобус так, чтобы его вершина располагалась над полюсом (рис. 9). Карандашом обведите на кальке параллель глобуса, по которой его касается конус. После этого снимите конус и разрежьте его по образующей. Прочерченную линию параллели поделите на равные части через определенное число градусов, например, через 30°. Соедините прямыми линиями точки деления с вершиной. Это будут меридианы. А параллели проведите в виде дуг концентрических окружностей через равные по меридиану промежутки, обозначающие определенное число градусов широты. В результате построения вы получите картографическую сетку в конической проекции.

Рис. 9. Проекция на конус
Рис. 9. Проекция на конус

Когда задача имеет слишком много решений, всегда возникает вопрос: нельзя ли выбрать лучшее из них. Для географических карт П. Л. Чебышев в 1856 г. поставил и решил следующую проблему: каким образом дать наиболее подобное изображение данной страны, чтобы при этом искажение масштаба оказалось минимальным. Без доказательства он сообщил, что для этого нужно, чтобы масштаб во всех точках границы страны был одним и тем же. П. Л. Чебышев умер, не опубликовав своей работы. Долгие годы математики всего мира искали решение этой задачи. Лишь в 1896 г. русский ученый Д. А. Граве сумел восстановить доказательство П. Л. Чебышева.

Картографическую проекцию, удовлетворяющую поставленному условию, можно создать только в том случае, когда северная и южная границы страны проходят по параллелям, а западная и восточная - по меридианам. Для каждой страны можно составить проекцию, которая в достаточной степени отвечает нашему условию. Попробуем это сделать для карты Испании и Португалии (рис. 10).

Рис. 10. Проекция с минимальным искажением масштаба
Рис. 10. Проекция с минимальным искажением масштаба

Найдем на глобусе или карте крайние точки Пиренейского полуострова и определим их координаты:

мыс Финистерре ... 42,9° с. ш., 9,3° з. д. (-9,3°);

мыс Креус ....... 42,3° с. ш., 3,3° в. д. (3,3°);

мыс Сан-Висенти .. 37.Г с. ш., 9,0° з. д. (—9,0°);

мыс Гата .........36,7° с. ш., 2,2° з. д (—2,2°)

Возьмем средние значения широт для северной и южной сторон и средние значения долгот для западной и восточной сторон четырехугольника:

Bср = (42,9 + 42,3)72 = 42,6°;

Bср = (37,1 + 36,7)72 = 36,9°;

Lср = (- 9,3) + (- 9,0)/2 =- 9,2°;

Lср = (3,3) +(-2,2)72=+0,6°.

Длина дуги меридиана в 1° составляет 111 км, а длина дуг параллелей в 1° на широте 42,6° равна 82 км и на широте 36,9° - 89 км. Разность средних широт составляет 5,7° (42,6—36,9), а средних долгот 9,8° (О,6+ +9,2). Подсчитаем длины сторон трапеции, составленной средними параллелями и меридианами. Получилось: нижнее основание 872 км (89*9,8), верхнее основание 804 км (82*9,8), боковая сторона 633 км (111*5,7). По этим данным вычертим в определенном масштабе пунктирной линией трапецию, и у ее сторон подпишем соответствующие широты и долготы (36,9° с. ш., 42,6° с. ш., 9.2° з.д., 0,6° в. д.). Предварительное условие выполнено. У нас получилась клетка вспомогательной картографической сетки, по сторонам которой выдерживается один и тот же масштаб. Пользуясь ею, проведем через 5° параллели и меридианы и от них нанесем границу Пиренейского полуострова. Она пройдет недалеко от линий вспомогательной сетки, и во всех ее точках масштаб практически будет одним и тем же, равным масштабу трапеции.

Идея П. Л. Чебышева нашла практическое воплощение при составлении карт СССР. Такие карты обычно составляют в конической проекции с условием сохранения масштаба по меридианам и двум параллелям, одна из которых пересекает южную границу страны, а вторая проходит на несколько градусов южнее побережья Северного Ледовитого океана. Получается так, что конус не касается глобуса, а сечет его по двум заданным параллелям.

Возможно, у вас возникнет вопрос: почему северная параллель сечения так же, как и южная, не пересекает границу страны, а находится южнее ее? Нетрудно догадаться, в чем тут дело. Перенос параллели сечения к югу вызван тем, что северные окраины нашей страны мало обжиты, а точность картографического изображения более важна в местах населенных.

Рис. 11. Изображение земного шара на эмблеме ООН
Рис. 11. Изображение земного шара на эмблеме ООН

Мы познакомились только с основными картографическими проекциями. А сколько их разновидностей? Сколько разработано еще так называемых условных проекций? Великое множество! Изображение земного шара мы видим на Гербе СССР. В такой проекции предложил представить нашу планету военный топограф В. Н. Адрианов. Получился очень эффектный рисунок. Земной шар представляется как бы силуэтом летящей в пространстве планеты. В другой проекции изображена схематическая карта на эмблеме ООН (рис. 11). Здесь на одном полушарии удалось изобразить поверхность всего мира - олицетворение идей организации, объединяющей все страны независимо от их политического устройства. Поверхность земного шара от Северного полюса до экватора изображена в обычной полярной азимутальной проекции. А дальше - от экватора к Южному полюсу изображение поверхности чрезвычайно искажено. Параллели, уменьшающиеся к югу от экватора, в этой проекции увеличиваются до бесконечности. Понятно, что карта в такой проекции для практического использования непригодна. А вот если сделать разрывы от экватора к южному полюсу, то поверхность южного полушария принимает сравнительно реальный вид. В результате такого картографического приема получается звездообразная проекция (рис. 12).

Рис. 12. Карта мира в звездообразной проекции
Рис. 12. Карта мира в звездообразной проекции

В условных проекциях картографическая сетка иногда может принимать весьма замысловатый вид. В качестве примера можно привести сетку, имеющую вид сердца. Такую «сердцевидную» проекцию предложил в 1538 г. Г. Меркатор. При первом взгляде на карту обращает на себя внимание своеобразный вид параллелей и меридианов, более похожий на произведение искусства, чем на картографическую сетку. Это была дань времени - в XVI в. уделялось большое внимание внешнему виду карт, и в их оформлении принимали участие виднейшие художники. Пустые пространства на самой карте и за ее рамкой заполнялись различными рисунками, а картографическая сетка изображалась так, чтобы возможно ярче отобразить сферичность Земли.

Несмотря на многообразие всевозможных картографических проекций, их объединяет общая закономерность: любой точке на карте соответствует только одна точка на земной поверхности, а всякий знак, помещенный в этой точке, имеет лишь одно значение.

предыдущая главасодержаниеследующая глава




Инициация через самоистязание: Жуткий средневековый пережиток, практикуемый в XXI веке

Последние из тхару: загадочные татуировки у женщин вымирающего племени в Непале

Афганская традиция «бача пош»: пусть дочь будет сыном




© Злыгостев А. С., 2001-2017
При копировании материалов проекта обязательно ставить активную ссылку на страницу источник:
http://geography.su/ 'Geography.su: Страны и народы мира'

Рейтинг@Mail.ru Ramblers Top100